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Abstract

A new method for computing conformer populations from NMR scalar coupling data is shown. This
method is significantly more quantitiatvely accurate than any previously used method, it is bounded
correctly, and it backs out additional useful information such as the free energy landscape that cannot be
found by any other method. This model is built on a generalization of the previous model to correctly count
accessible equilibrium states, and it is rooted in statistical mechanics, giving this model more theoretical
grounding than the previous model. Finally, using this model explains several experimental details that
could not be explained by prior methods.

Introduction

In computational chemistry, particular atten-
tion is often given to molecular structure dur-
ing a simulation. There are several theories
in place to track molecular trajectories at vari-
ous levels of rigor, including molecular dynam-
ics and quantum mechanical methods such
as Hartree-Fock theory[1−2]. However, all of
these methods are confronted by the same is-
sue: it is difficult to demonstrate how well they
work as there is still no good way to examine
molecular structure in solution without signifi-
cantly perturbing the structure. One of the few
methods that exists for doing this in general
is nuclear magnetic resonance spectroscopy
(NMR). NMR spectroscopy relies on the fact
that molecules are basically spin systems, and
when they encounter a large magnetic field,
there is a splitting in energy between spin up
and spin down states. By exciting transitions

in these spin states and watching how it affects
nearby spins, the environment of every spin
can be examined and assembled into a concrete
picture of the molecule in solution. Most of
this information about the connections between
spins is given by the scalar coupling between
those spins, also known as the J-coupling[3−4].
To make this less abstract, consider the ethane
system shown in Figure 1.

Figure 1: Sawhorse and Newman projections
for a simple disubstituted ethane fragment.
Part A shows that the substituted groups
are free to rotate around the carbon carbon
sigma bond. Part B shows what is known as a
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“gauche” configuration and part C shows what
is known as a “trans” configuration.

As molecules are free to rotate around
sigma bonds, such as the bond between the
two carbons in part A of the figure, there ex-
ist many rotational conformers or rotamers as
shown in parts B and C. Part B shows the
“gauche” rotamer, part C shows the “anti-” or
“trans” rotamer. These two broad categories of
rotamers are differentiated solely by the dihe-
dral angle: the angle in between the substituent
groups if the molecule is flattened as shown
in the Newman projection. In the gauche con-
figuration the dihedral angle range is between
30 to 90 degrees or 330 to 270 degrees as one
group can either be to the right or left of the
other, and in the trans configuration the dihe-
dral angle is between 150 and 210 degrees[5]. In
any case, every molecule with an ethane frag-
ment will have an associated fraction of the
population in the gauche configuration and an
associated population in trans based on which
configuration minimizes the free energy. Fur-
thermore each fraction will have a specific an-
gle between the groups that represents an en-
ergy minimum, and this angle is known as the
gauche angle or the trans angle depending on
which fraction is being discussed. To relate
this to J-couplings, the J-coupling is basically
a function of the dihedral angle, so if one is
known the other can be obtained from some
empirical correlations known as the Karplus
curves[6]. This provides an easy method for
computing the equilbrium gauche and trans
angles. Even with this, there is still one is-
sue: the fraction gauche cannot be calculated
from these J-couplings unless some assump-
tions are made. The basic idea is to calculate
this fraction by assuming the observed value
for the J-coupling is a sum of two contributors,
a trans configuration J-coupling and a gauche
configuration J-coupling, each weighted by the
fraction trans and fraction gauche. When val-
ues for the J-coupling of each configuration
are obtained from Karplus curves and plugged
in, the fraction gauche can be easily solved.
This approach is lacking in several respects
however. Firstly, the Karplus curves are sinu-

soidal, so by selecting only two conformers to
represent the continuum of states available a
two point approximation to a sine wave has
been made, which is very inaccurate. In fact
this method often reports fractions above 1, be-
cause there is no hard constraint on what the
fraction should be when only the two most
likely states are counted. If lower probability
states are included in the calculation this will
bring down the fraction in those higher proba-
bility states and count correctly. Clearly, a more
subtle approach is needed. A new method
has been developed that stems from statisti-
cal mechanical treatment of the system that is
correctly bounded on the fraction gauche, sim-
ilarly computationally inexpensive, and overall
more accurate.

Theory

This new method is built on essentially the
same principle as the old method: the observed
J-coupling is the sum the J-coupling at every
angle weighted by the fraction of the popula-
tion in that angle. This definition follows di-
rectly from the definition of expectation value,
and it really is just a generalization of the old
method from two points to many points. This
can also be easily made continuous by replac-
ing the sum with an integral over the dihedral
angle, however integrals are harder to work
with in the optimization mechanics. For this
reason, a discrete approximation will be used
here without loss of generality, but with one
point in the spectrum per degree of dihedral
angle. To make this more concrete, for one
rotation around a sigma bond there are 360
states the system could be partitioned into con-
veniently, by degrees of rotation. The observed
J-coupling is some average of all of these 360
states. With this established the following dif-
ference is minimized for a set of J-couplings
observed from experiment:

Jobs −
360

∑
φ=1

P(φ)J(φ)

J(φ) is the Karplus curve for the system
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in question, as it relates the J-coupling to the
dihedral angle at every angle, and P(φ) is a
probability distribution that is varied to min-
imize this difference. This probability distri-
bution is key to the problem as there will be
one single probability distribution for every
observed J-coupling, and this probability distri-

bution is related to the free energy landscape
of the system via Boltzmann factors. If the
probability distribution is to be supplied and
varied, the general form of this distribtion must
be obtained. This can be easily backed out by
looking at the example free energy landscape
shown in Figure 2.

0 -180 180-60 Dihedral Angle (degrees)60

Figure 2: A free energy landscape as a function of dihedral angle. There are three minima, associ-
ated with the two gauche configurations at positive and negative sixty degrees of rotation and one
associated with the trans configuration at one hundred eighty degrees of rotation. The lower the
energy, the higher the probability of finding the molecule at that angle in equilibrium.

There are three minima in energy corre-
sponding to the two gauche configurations and
one trans configuration. This means that the
probability distribution should have 3 peaks,
one for each gauche configuration and one for
the trans configuration. Furthermore, the two
peaks for each gauche configuration should
be symmetric, and since the fractions in each
configuration may vary the area of these peaks
should not be fixed. Therefore the peak height
and standard deviation should be varied. Also,
consider that each configuration has one single
angle that minimizes the free energy, therefore
each peak in the distribution should have a
mean centered around these angles. This is
really all that can be stated about the nature

of the peaks in the distribution other than that
they must be Gaussian peaks, as the central
limit theorem requires that for a large sam-
ple size the distribution of conformers in these
states will be normal. This means there are 6
parameters to vary in total: gauche and trans
peak heights, standard deviations, and means.
We can then minimize the difference between
the observed couplings and the calculated cou-
plings to find what probability distribution,
hence, what free energy landscape, fits the
data the best. Numerical methods such as con-
strained optimization by linear approximation
and sequential least squares programming can
be used to do the minimization quickly and a
single probability distribution can be fit to a
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set of six J-couplings in less than one second.

Results

The new method for calculating fraction
gauche not only gives the complete free en-
ergy landscape, but also gives an error mea-
sure to know how good the fit is. In prac-
tice the root mean square deviation between
the observed and calculated values is on the
order of 10−5, meaning that fantastic fits are
usually achieved. Rarely, the error rises to be-
ing on the order of a J-coupling, about 7 Hz,
which implies more often that the J-couplings
inputted are incorrect than there is no prob-
ability distribution that fits well. Also, this
method gives more intuitive information about
the system, as the standard deviations of the
probability distributions are a rough measure
of how sharply divided the different configura-
tions are. For example a large standard devia-
tion to the gauche peak means that there is not
in actuality a single gauche angle but a broad
range of possible states. This clarifies dynamics
is many real situations, such as those for the
molecule TMEDO, a common polymer initia-
tor. In experiment it was found that TMEDO
has a higher substituent electronegativity than
TMDMBA, a similar molecule, and this means
it should have a lower gauche fraction from the
Karplus curves. However, the old method for
calculating gauche fractions showed a contra-

diction, because the fractions for TMEDO and
TMDMBA were both above 1, and TMEDO had
a higher fraction gauche than TMDMBA. When
the new method was applied, it was instantly
seen why this discrepancy arises: the distribu-
tion for both TMEDO and TMDMBA is very
broad in the gauche configuration, so there
were many contributing states ignored and in
reality TMEDO does have a lower gauche frac-
tion than TMDMBA. The older method failed
to work as the TMEDO peak is higher but more
broad. This new model for calculating gauche
fractions is far more accurate then, and much
more intuitive.
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